Discrete Structures I
 sample ex 2

1. Let $M=\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
(a) Evaluate M^{2}
2. Is it true that if A and B are two 3×3 matrices satisfying $A B=0$ then one of them must be the zero matrix? Explain..
3. Consider the sequence $\left\{a_{n}\right\}$, where $a_{0}=1, a_{1}=2, a_{2}=3$ and

$$
a_{n}=a_{n-1}+a_{n-2}+a_{n-3}, \quad n \in \mathbb{Z}^{+}, \quad \text { where } n \geq 3
$$

(a) Find a_{3}, a_{4} and a_{5}.
(b) Prove by mathematical induction that for all $n \in \mathbb{N}$, we have that $a_{n} \leq 3^{n}$
4. Show that $1^{2}+3^{2}+5^{2} \ldots+(2 n-1)^{2}=\frac{n(2 n+1)(2 n-1)}{3}$ for all n.
5. Let $P(n)$ be the inequality $n^{2}<2^{n}$.
(a) Write $P(5), P(k), P(k+1)$
(b) Show that $P(n)$ holds for all $n \geq 5$. Show all the details
6. As each of a group of business people arrives at a meeting, each shakes hands with all other people present. Use mathematical induction to that if n people come to the meeting, then $\frac{n(n-1)}{2}$ hand shakes occur.
7. Prove by mathematical induction that $3 \mid n^{3}-n$ for every positive integer n.
8. Consider the function: $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ given by: $f(m, n)=\left(3 m+n, n^{2}\right)$
(a) Is f one-to-one?
(b) Is f onto?
9. Show that if $f: S \rightarrow T$, and $g: T \rightarrow U$ are both $1-1$, then $g o f: S \rightarrow U$ is also 1-1.

