Discrete Structures I sample ex 2 Fall 2013

1. Let
$$M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(a) Evaluate M^2

- 2. Is it true that if A and B are two 3×3 matrices satisfying AB = 0 then one of them must be the zero matrix?Explain..
- 3. Consider the sequence $\{a_n\}$, where $a_0 = 1$, $a_1 = 2$, $a_2 = 3$ and

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}, \quad n \in \mathbb{Z}^+, \text{ where } n \ge 3$$

- (a) Find a_3 , a_4 and a_5 .
- (b) Prove by mathematical induction that for all $n \in \mathbb{N}$, we have that $a_n \leq 3^n$

4. Show that $1^2 + 3^2 + 5^2 \dots + (2n-1)^2 = \frac{n(2n+1)(2n-1)}{3}$ for all n.

- 5. Let P(n) be the inequality $n^2 < 2^n$.
 - (a) Write P(5), P(k), P(k+1)
 - (b) Show that P(n) holds for all $n \ge 5$. Show all the details
- 6. As each of a group of business people arrives at a meeting, each shakes hands with all other people present. Use mathematical induction to that if n people come to the meeting, then $\frac{n(n-1)}{2}$ hand shakes occur.
- 7. Prove by mathematical induction that $3 | n^3 n$ for every positive integer n.
- 8. Consider the function: $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ given by: $f(m, n) = (3m+n, n^2)$
 - (a) Is f one-to-one?
 - (b) Is f onto?
- 9. Show that if $f:S \to T, \text{and } g:T \to U$ are both 1-1, then $gof:S \to U$ is also 1-1.